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In the interior of a star as cool and dense as a white dwarf, =~ e
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the Coulomb energies between neighboring nuclei are large compared }A

A
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-

to the kinetic energies of the nuclei. Each nucleus is constrained. <2
to vibrate about an equilibrium position and the motion of the ’
nuclei in the interior of a white dwarf is similar to the motion

of the atoms in a solid or liquid. We propose a solid-state method

forr calculating the rate at which a nuclear reaction proceeds be-
tween two identical nuclei oscillating about véd,jacent lattice sites.
An effective potential U(g) derived by analyzing small lattice
vibrations is used to represent the influence of the Coulomb fields
of the lattice on the motion of the two reacting nuclei. The wave
function describing the relativel motion of the two reacting particles

is obtained by solving the Schrédinger equation containing the effec-

tive potential U(r). From this wave function, we derive an expression ’

for the reaction rate. The rates of the p + p and c]2 + 012 reactions
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orders of magnitude smaller than those calculated by the method

previously suggested by Cameron. W
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I. INTRODUCTION

The motions of nuclei in the interiors of cool, dense stars resemble the
motions of atoms in solids or liquids. The mean free path between collisions
suffered by a given nucleus :l_s much smallexr than the average distance between
nuclei and may be comparable to the particle's quantum mechanical wavelength.
Each nucleus is therefore forced to oscillate about a fixed position in a
lattice stmcture.l

Reactions between charged particles in stars are inhibited by the small
probability of penetrating the Ccmlcmb barrier between nuclei. However, the
probability of penetrating the baxfrier increases rapidly with the energies of
the colliding particles. In most stars, the effective energies are due pri-
marily to thermal motions. In stars as cold as white dwarfs, the thermal
energies alone are too small to allow charged particles to react at signifi-
cant rates. However, the Coulomb potential of the J,attice combined with the
ground-stete vibrational energy of the reacting muclei can, st high densities,
enable nucleil at adjacent lattice sités to react raﬁidly even at zero temper-
ature.

It is important that one be able to calculate the rates of reactions
occurring at high densities and low temperatures, reactions to which Cameron®
has applied the nsme "pycnonuclear." Cameron has suggested that such reac-
tions might be the source of energy for nova explosions. A knowledge of the
rates of pycnonuclear reactions would also be useful in mathematical studies
of white dwarfs. From the rates of reactions at high demsities, one can infer
certain limitations on the possible compositions of the interiors and envelopes
of vhite-dwarf stars, compositions which would otherwise be coampletely unknown.
Any future attempts to evolve stellar models into the white-dwarf state from

higher temperature configurations will also require detailed knowledge of
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" to find U(x). Then in Section III, we solve the Schrdinger equation for the
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.

pycnonuclear reaction rates.

In this paper we develop a method for finding the rate at which nuclear
reactions proceed between particles vibreting sbout adjacent lattice sites.
For reactions between particles with Z > 2, the solid-state approach applies
to the temperatures and densities in Region I of Fig. 1. Figure 1 also shows
typical central temperatures and densities for various types of stars.

We consider primarily reactions in a lattice of identical nuclei, although
we do suggest a rough model for generalizing the method to include reactions
in lattices with arbitrary campositions. A more accurate treatment of reac-
tions in dense stars with complicated compositions would require detailed
analysis of the structures of lattices containing more than one nuclear species.

At the high densities of interest here, the motions of any pair of muclei
are strongly coupled to the motions of other nuclei nearby. In order to
compute the mean lifetime for a reaction between two adjacent nuclei without
solving the complete many-body problem exactly, we make the fundamental assump-
tion that the effect of the rest of the lattice on the relative motion of the
two reacting particles can be adequately represented by a static potential
U(r). The reaction rate depends strongly on U(r) through the barrier penetra-

tion factor. In Section II, we analyze the small vibrations of the lattice

wave function characterizing the relative motion of the two reacting particles.
Having found this wave function, we derive an expression for the reaction rate.
Section IV contains a discussion of the limitations of the solid-state treat-
ment. We also consider in Section IV the problem of generalizing the méthod
to include reactions between nonidentical nuclei, In Section V, we present

numerical results for the rates of the p + p and 032 + 012 reactions. Our

method predicts rates several ordexs of magnitude slower than those obtained




using the procedure suggested by Cameron.
of calculating reaction rates at temperatures higher than those covered by

2 Salpeter® has developed a way

the solid-state method; our results are consistent with those of Salpeter.

II. ESTIMATION OF THE EFFECTIVE POTENTIAL
A. General Discussion |

The strong Coulomb forces between nuclei in a lattice greatly complicate
the calculation of reaction rates at high densities. Each ‘rmcleus experiences
Coulomb forces due to many neighboring particles. To compute the reaction
rate per unit volume exactly, ome would have to solve the complete many-body
problm including all the nuclei in the lattice. This many-body problem seems
tractable only for the case of small displacements of the nuclei from positions
in a periodic lattice, the case to which the phonon approach of solid-state
physics is applicable.

We cannot calculate reaction rates, however, by relying just on the
phonon theary to describe the motion of muclei under the influence of lattice
Coulomb fields. A nuclear reaction between two particles must involve their
approaching one another to within a distance of the order of the nuclear
radius, which is much smaller than bnn’ the nearest-neighbor distance. The
phonon theory does not apply to such large displacements from equilibrium.

We do know, however, that for smell separations between muclei, the relative
motion of the two muclei is influenced primarily by a potential Z2e2r L, end
the forces due to the rest of the lattice are not important.

We assume that the relstive motion of two muclei oscillating about
adjacent lattice sites can be adequately repcreéented by motion in some poten-
tial V(r). We require that V(r) + 72?1 a8 r + 0 and use the results of
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.tl;e phonon analysis to determine V(z) for small displacements from equilibrium,
i.e., for r approximately equal to the vector between the equilibrium posi-
tions of the two nuclei. In this way, one can reduce the many-body problem
involving all the nuclei in the lattice to one involving just the relative
motion of two particles. By proper choice of the potential, we can accurately
approximate the effects of motions of the neighboring nuclei.

In this section we treat only identical nuclei, each having mass M and
charge Ze. We consider the rate at which & nuclear reaction proceeds between
two of these muclei, labeled 1 and 2. Let the relative displacement of the
two nuclel be given by r = r = Lo» and let the components of r bde x, ¥,

1
and Z. The mass characterizing the relative motion is given by

uo=3M (1.1)

Let the equilibrium positions of the particles be separated by a distance b
along the z-axis, where bnn is the nearest-neighbor distance characteristic
of the lattice. The potential V(r) acting on the relative motion of the two
neighboring muclei must have a minimm at (0,0,b ). Near the minimm point,
the potential has the farm

V(x) ~ (0,0,0_) R [nf (2 + ¥®) + 0,7 (= - bm)a] (1z.2)

if the lattice is, as expected, symmetric under the operations (x + -x,y + y),
(x + x,y + -y), and (x + y,y + =x). In Sec. IIB we use the phonon analysis
of lattice vibrations to determine the values of §_and Q.

We note that the total effective potential can be separated into two
parts, one repregsenting the static Coulomb field between nuclei 1 end 2, and
the other represeunting the effective potential due to the other nuclei in the



lattice. That is, we can write
V(r) = 722 &4 u(zx). (11.3)

Since muclei 1 and 2 are assumed identical, the potential U(r) satisfies the
relation

i) = Uz - &) = Uz, - xy) = U(-x), (Ix.ka)
vhich implies that
vu(0,0,0) = 0. - (II.4b)
We define the zero of energy by the relstion
uv(0,0,0) = oO. (11.5)

Equations (IT.2)-(II.5) express all our knowledge of U(r). They determine
the value and gradient of U(z) at the origin and the gradient and second de-
rivatives of U(z) st (0,0,b ). Equations (II.2)-(II.5) obviously do not
determine U(r) uniquely for all r. |

We must now consider the effects of our incomplete knowledge of U(r) on
the calculated reaction rate. It can be shown that the potential U(g) affects
the reaction rate mainly through a barrier penetration factor P(E),. where

P(E) = exp [- (au)? ﬁ'l Ip] . (II.6a)

' The factor I, in Eq. (II.6e) 1s defined by
rc i- ]
1, - f [zzear"l-n- u(0,0,r) - E] ar, (II.6b)
'R

vhere E is the energy of the relative motion, R is the nuclear redius,



. .

and To is the classical turning point radius defined by

E - U(o,o,l‘c) = zzearc-l. (II.GC)

For r near r,, the quantity U(0,0,r) - E makes an important contribution
to the integrand in Eq. (II.6b). Fortunately, for r near r,, the quantity
v(0,0,r) - E can be determined accurately from Eqs. (IX.2) and (II.3). For
r near b, the potential V(r) is sccurately described by Eq. (II.2). Since
ve assume that the vibrations are small, i.e.,

(b -r) bn;l <1, (1T.7)

the harmonic oscillator approximation of Eq. (II.2) is accurate in the region
wvhere the wave function is large. Thus the eigenstates of the Schrtdinger
equation with potential V(r) can be labeled by harmonic oscillator quantum

numbers D, ny, and n_, and the relation
E = E(nx,n n)=(n g * Oyt 1) 12+ (o, + %) 18, + v(0,0,b ) (1r.8)

gives the energy eigenvalue for the state (nx,ny,nz).

Equation (II.8) accurately establishes E - V(0,0,bm) for any given state,
vhile Eqs. (II.2) and (II.3) accurately determine U(0,0,r) - V(0,0,b nn) for
r near r,. Hence the quantity U(0,0,r) - E is known for r near r_.

Hovever, Eqs. (II.2)-(IL.5) do not accurately determine U(0,0,r) - E for
r K r,. Fortunately the integral in Eq. (II.6b) does not depend strongly om

U(0,0,r) - E for smll r, since
Z2e?r™L 5> |u(0,0,r) - E|

if r K r,. -In order t0 minimize the error in the barrier penetration integral
I, due to owr incomplete knowledge of U(0,0,r) - E, we assume U(r) can be




represented in the simple form
Ur) = kP ek ek (P4 ) © (1Z.%a)

Substituting Eq. (II.%) in Eq. (II.3) end comparing the result to Eq. (II.2)
for r near (0,0,b ) yields

X, = 2zze2bn;3 -3 unza (1I.9v)
Ky = - zzezbn: + %- unzzbn;J' (1I.9¢)
and x = jua’ (1z.94)

(The oscillator frequencies @, eand @ will be determined in Sec. IIB.) We

have assumed that U(r) takes the simplest form consistent with Egs. (II.2)-
(IT.5). Further investigation has shown that several other smooth forms

assumed for U(r), forms which are elso consistent with Egs. (II.2)-(II.S),

¥ield values of I, within a few percemt of that given by the U(r) of Eq. (II.9a).

B, lattice Dynamics

l. General Discussion

In this subsection we use a normal mode analysis to show that the relative
motion of particles 1l and 2 can, for smell displacements, be represented by
motion in a harmonic oscillator potential. We then compute the ﬁé@wncies
9, and 9, characterizing the oscillator potential.

The electrons are highly degenerate at the temperatures and densities to
which the solid-state method applies. The energy of the Coulamb interaction
between an electron and a nucleus is comparable to the average electron
kinetic energy only at distances small compared to the electron's wavelength.
conseqmth; the fields of individual miclei cannot significantly affect



the electron wave functions. The electrons can react only to lattice vibra-
tions with very long wavelengths. By solving the Thomas-Fermi equation for
the electron distribution, one can showl that the electron motion affects

only a negligible part of the vibrational spectrum as long as
b K aoz"/ 3 (11.10)

vhere a  is the Bohr radius. Since inequality (II.10) elways holds under the
conditions to which the solid-state model applies, we assume a uniform distri-
bution of electrons.

The total potential of the system of electrons and nuclei is then the sunm
of the following three terms: (1) the electron-electron potential energy,
which does not depend significantly on the positions of the muclei; (2) the
potential energy of interaction between the uniform distribution of electrons
and the lattice of muclei; and (3) the energy of the Coulowb interactions
among the nuclei themselves.

For small displacements of the muclei from their equilibrium positions,

' the potential energy can be written to good accuracy in the form

Vo= W4V, (11.11)

- where Wo is independent of the nuclear displacements, and Wa is a homogeneous
polynomial of second order in the displacements. Using the usual normal mode
procedure,” we can find linear coubinations Q of the displacements of the

muclei such that the total Hamiltonien of the system of muclei can be written

in the form

¥

H = E, (A . x.u‘%.?), | (1I.12)



vhére, classically,
P = MNQ , (1r.13)

and Ms and usa are constants independent of the muclear displacements.

Quentizing the system, we find that the wave function describing the nuclear
displacements 1s the product of the harmonic oscillator wave functions for
all the normal mode oscillators.

We shall find in Sec. IV that the solid-state approach aspplies primarily

to temperatures such that kTh T

is small compared to most of the normal mode
frequencies. It is therefore reasonable to consider the zero-temperature
ldmit and assume all of the normal mode oscillators are in their ground states.

The ground-state harmonic oscillator wave function is a simple gaussian,
and the product of the ground-state wave functions of all the normal mode
oscillators can be written

¥ = Aexp [- .3 (M w 57Y) qf] ’ (IT.1%)

vhere A is a normalization constant. Since the Q’s are linear combinations of
the displacements, the exponent in Eq. (II.14) could also be written as a
homogeneous polynomial of second order in the displacements. We are interested
only in the relative motion of particles 1 and 2. To find the probability
distribution for the relative displacement of particles 1 and 2, we integrate
|§]2 over the displacements of all the muclei except 1 and 2, and then inte-
grate over the displacement of the center of mass of particles 1 and 2. The
successive integrationa' ot |§|° over the displacements do not alter the general
functional form. Each integration yields a pure exponential with a homogeneous
polynomial of second order as the exponent. Assuming the lattice invariant
under the operations (x + -x,y + ), (x + x,7 + -y), end (x + v,y + ~x), we




obtain an expression of the form

P(r) = A' exp {- un-t [nx E+5®) +a (z- bm)a]} (11.15)

for the probability distribution of the relative positions of particles 1 and 2.

The probability distribution described by Eg. (II.15) is identical with
that of a three-dimensional harmonic oscillator in its ground state. Despite
the complicated effects of lattice vibrations om the relative motion of the
two adjacent nuclei, the probability distribution for small displacements in
the relative positions of the two muclei is the same as it would be if the
relative motion of the two muclei were subjected to a static harmonic oscil-
lator potential. Thus we have only to find the proper oscillator frequencies
Q_end 4.

2. Finding the Oscillator Frequencies

We know that for small displacements, the probability amplitude is a
three-dimensional gaussian. The remaining problem is to find the widths of
the gaussian in the transverse and longitudinal directions. The widths are
related to the oscillator frequencies by

B, = laxfagfas £ B(x) = n2ua)t (I1.26a)
ma (= -b,)%, = Jaxfayfas (x - b )% P(x) = w2 k)t (mae)
if Jaxfayfaz P(r) = 1. (1x.18¢)

The phonon approach of solid-state physics provides an easy way of calcu-
lating (xa>6 and {(s - bnn)a>o' For the case of a periodic lattice, the normal
node vibrations can dbe described as lattice waves with given wave numbers and

10



polarizations. The characteristic frequencies and the polarization vectors
were calculated mmerically for several thousand wave numbers in the first

6 and the expectation values (xz)o end {(z - 'bnn)2 o Vere

Brillouin zone,
emwubedmingmmgemtheﬁmmummm. These expectation
values, vhen substituted in Eqs. (II.16a) and (IX.16b), yield the following

results:

| a9 = lL28uw (Ix.17a)
and S8 = 188w , (1IX.170)
where w, = Ze w3)% . (IX.17¢)

These numerical values are expected to be accurate to within 1% for the
physical model adopted here. By substituting Eqs. (II.1l7a) and (IX.17b) in
Eqs. (IT.9b)-(II.9d) one can find the parameters k,, ky, and k' in the ex-
pression for U(r).

We have used the normal mode anaiys:ls of lattice vibrations to determine
the paremeters i and §}, characterizing the effective potential V(x) acting
on the relative motion of the two reacting particles. In Sec. III, we solve
" the Schrédinger equation containing V('z:) for the wave function of the relative
motion of the reacting particles. Before proceeding to solve the Schrtddinger
equation, however, we should consider two related problems.

3. _Nonzero Temperature

We have treated only the case where all the oscillators are in their
ground states. For most of the temperstures to which the solid-state model
applies, nearly all of the oscillators are in fact in their ground states.

However, ‘we can calculate the average expectation values of 22 and (z - bm)2



-+ for any given temperature using the sme phonon approach. For all tempera-
tures, these average expectation values are within about 20% of those obtained
using the simple harmonic oscillator model with the frequencies nx and nz

. given by Eqs. (II.17a) and (II.17b). Thus we expect that the approximate
- potential well of Eq. (II.2) describes the relative motion even for nonzero

tamerafh;z'el.

| L. Comparison with the Static Model
' We have determined the lattice potential U(r) by examining small vibra-

tions of the lattice. The strong coupling between the relative motion of two

reacting particles and the motion of neighboring nuclei is thus taken into
account approximately.

The frequencies nx and nz can be obtained more easily if one neglects
the lattice motion and calculates U(xr) using a purely electrostatic model.
Thisprocedm‘ehagtheadnntageofaﬂmingdﬁect,mmicalcalculation of
U(x) for any I, thereby eliminating the need for relying on an extrapolation
formula like Eq. (II.9). .Van Horn' has shown that, in this static approxima-
tiom, |

8, = 185w (1I1.18a)
and 8, = 2.39 u, (IT.18b) |

for the bec lattice structure.
Camparison of Eqs. (II.18) with Eqs. (IX.17) indicates that coupling to
the lattice motion decreases the oscillator frequencies somewhat. The second
 aertvatives 3%/3:% (0,0,5 ) ama 3%W/3x® (0,0,b ) are reduced vy 36%
and 52%, respectively, by the motion of the lattice. The lattice effeetiveJy
polarizes under the influence of the motion of the two reacting particles.

f "'77: ‘ 12 _‘ .
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This polarization acts to reduce the Coulomb fields that oppose displacements
of the reacting nuclel from their equilibriwm positions. Lattice polariza-
tion increases the reaction rate noticeably. Figure 3 compares reaction

. Meaemtednsmgthestaucanddymmicva]maornxandnz.

III. CAICULATION OF THE REACTION RATE
- In this section, we derive an expression for the reaction rate. We begin
by finding a formula for the reaction rate in terms of the vave function cor-

responding to the nonmuclear potential
VE) = Perleng i er (P4 R). (Tz.1)

In Subsections ITTB and IIIC, we derive the wave function, and in Subsection

" ITID we obtain tne reaction rate itself.

A. General Expression for the Reaction Rate
The total potential affecting the relative motion of two reacting particles

. 1s the sum of the nonnuclear potential V(r) of Eq. (III.1) end a muclear poten-

tial. ‘The nuclear potentisl is effectively zexo except within a radius R,

vhere

R Kb (11x.2)

m ?

. since ve limit ourselves to densities well below miclear densities.

Ve ‘deea:posgm regular solution to the Schrdinger equation




in terms of spherical harmonics as follows:

@ - Z orag T (E57) Yy (0) (TI2.8)

: Let the regular solution to the Coulomb-wave Schridinger equation

5{<§2 +22 [z - z"’ear'll} @) = o (111.5)
be written +°(z) z e T (Bs7) T(0) . (II1.6)
Since V(g) ~ et (IIL.7)

for r <<b_, the redial functions tL(E;r) and fl‘c(E;r) must differ only by
a constant factor when r is near the nuclear radius R, which is small compared
tob . Thus it is interesting to compere the reaction rate I'(E) for an ex-

" ternal potential V(r) with the rate I'°(E) of the same reaction at the same

energy but with an external potential Zoe“r

We limit ourselves to reactions in which one incident orbital angular
momentum value L dominates the reaction rate. We also choose a ¥°(r) which
approaches a plane wave of unit intensity as r + @, except for the usual
slovly varying phu# factor characteristic of Coulomb waves. We normalize
£; °(B;r) such that

ch(E;r) + (ur)"l sin [xr - a(r)] (111.8)

as r > . Then one can show that the reaction rates for exbernal potentials

V(z) emd zae /r are rchted as follows:

fL(B;r)
I £,°(85x)

=n |°m|"'

r,. " @) =




In the following subsections, we find expressions for ap, and fL(E;r)
for substitution in Eq. (III.9).

B. The Radial Equation
The remaining problem is to solve Eq. (III.3) for ¥(r). We concluded

’ in Sec. II that the harmonic oscillator approximation is valid near the point
e (o,o,bm). Thus near (o,o,bm) we can write

2. e 5l Tpd) = U fagx) U lasy) U (n,0) (121.10)
M

The right side of Eq. (III.10) represents a normalized three-dimensional
harmonic oscillator wave function with frequencies Q » f - and n and occupa-

tionmmbmn n’,andn. The harmonic oscillator wave functions are large

J

‘onlynearx-o,y-o,z-b ,or,inathermds,r-bm,o-o. Thus

the product U:(nx;x) Uy(n,;y) essentially expresses the angular dependence of
the vave function mi- U’(n';s) describes the radial dependence. Hence we

fx‘(n';r) ~ U’(n' ;r)bn;l (III.11)

Arorrnear‘bmund.

®  ® | |
apg(an) ~ Lbn;lf axf ay U (n3x) U (n ;) Yy [9(x,3)]. (II1.120)

'Inthisapproximtiontheeoerﬁ.eieuhdmdependonnxandny,b\rl;notonnz.‘

WehaveahmtmmnMMMcnhindependentofn andny'forr
near b, ,Mnmnmmm&hmummeutofnx




We should note that the integration in Eq. (III.12a) can be performed
readily for the important speclal case where B, = ny =L =M= 0, and the

resu_’_l.t is

1
8,,(0,0) =~ e (e D 2y ®

- . (11I.212b)

According to Eq. (III.11), fL(nz;r) mst satisfy the same differential

equation as Uz(nz;r) for r near b . Thus we find that
d2
[- =5+ gl(r)] fL(nz,r) ~ 0 (1IT.13a)
ar _
for r mear b . The quantity gl(r) is defined by
g,(r) = 282 [v(0,0,r) - V(0,0,b) - (n, +3) 19,]. (III.13b)

° We want to compare Egqs. (III.13) with the equation £, satisfies for small
r. At small r, we can neglect the anisotropy of the potential and separate
the solution into radial and angular components in the usual way. Then, for

r << bnn’ £, satisfies the equation

L
2
[' :ra + L(i'é* L, 32(1')} [r £;(n;r)] = o, (III.2%a)
where g&(r) = g(r) - 2w 0 (a + 0 + 1) (III.140)

It would, of course, be convenient if fL(nz ;T) satisfied the same differ-
ential equation for all r, 0<r<Db an® We now show that the radial wave

function approximately satisfies the differential equation

2 |
[- -‘2;—5 + 1‘%21-1-)- + sl(r)] [r £.(n;x)] = o, (1IT.15)

both for r~ b and for r << b by noticing that Egs. (III.13a) end (III.15)

16



are approximately the same for r near b and that Egs. (1IT.1%a) and (ITI.15)
are essentislly equivalent for small r. Compering Egs. (III.13a) and (III.15)
we note the following facts: (1) the term L(L+1)r < in Eq. (III.15) is
negligibly small for r near b_ providing the expectation value {(z - bm)2>
is small ccmpared to b ma; and (2) the quantity rfL(nz;r) can be accurately
approximated by b fL(nz;r) for r near b . It follows that Egs. (IX1.13a)
and (III.15) are essentially the same for r near b . Comparing Egs. (III.14a)

and (III.15) for r << b, we notice that the quantity e X defined by

-1
€y = 2 ua 2t (nx +n + 1) (III.18)

is small compared to 2 pZoef °r+. Thus Eqs. (III.l%a) and (III.15) differ
little for r << b__. We have now estsblished that Eq. (III.15) holds accurately
in the limits of large and small r. We assume that it holds sapproximately for
intermediate r.

The most serious approximation involved in the use of Eq. (III.15) for
all r is the neglect of exy for small. and intermediate r. One can estimate
the resultant error in the calculsted reaction rate by adding exy to the energy
for small r in the barrier penetration factor of Eq. (II.6). One finds that
the error in the barrier penetration integral Ip should be less than 2%.

By making various approximations we have shown that the radial wave
function satisfies Eq. (III.15) for all r. In Subsection IIIC we outline the

procedure for integrating Eq. (III.15) to find £ (n_;r).

C. The Radial Wave Function
Our method of solving Eq. (III.15) approximately for fL(nz;r) is alge-
braically complicated but straightfarward. It introduces errors small compared

to those due to the approximations involved in Eq. (III.15) itself. Thus we

17




only outline the procedure briefly.

We use the modified WKB ap;proxixma‘t;ion8 in which the centrifugal potential
is represented by (L + -%)21'-2 instead of L(L + l)r-2. We determine the normal-
ization by matching the WKB approximation to the harmonic oscillator wave
function for r near b an® The WKB integral cannot be evaluated analytically,
but it can be expressed to a good approximation as the sum of two integrals
which can be calculated exactly. The first integral is the one that appears
in the WKB approximation to a Coulomb wave function. Thus the radisl wave
function fL(nz ;T) can be written as the product of a Coulomb wave function
and a correction factor. The Coulomb wave function appearing in i‘L(nz;r) is

£, “(E';r), where

B = 2Pt (147D (III.17)
The relation |

£ = 2, (L+ PP r, (111.18)

defines the parameter §, which is usually mich larger than one. Thus E' is
approximately the energy of a pure Coulamb wave with classical turning point
r,e The classical turning point radius defined in Eq. (II.6c) can be expressed

in the approximate form

T, ™~ b - (#(2n, + 1)]% (pﬂz)—%, (111.19)

providing the vibrations are small.

To find the reaction rate using Eq. (III.9), we must calculate the ratio

Q given by
' 2n f(82,57)

- (1II.20)
+0 .
R A¢S))

Q



vhere E 1is defined in Eq. (II.8). The quotient Q is the ratio of the
Couloumb wave functions for emergles E' and E multiplied by a correction
factor.

We must define four parametexs occurring in the two Coulcmd wave func-

tions. The e:q:ressidns
k= & (2uE)E (III.21)
-1 1
and : ' = B (2uB')2 (IIx.22)
express the wave mmbers in terms of the energies, while the equations
n = Zzeauh-en-l (131.23)
and ' = Zaezuﬁ'a(n')'l (III.24)

give the Coulcomb field parameters in terms of the wave mumbers.
‘We must also define some parameters occurring in the correction factor
that multiplies the ratio of the Coulamb wave functions. Let

¢ = 2uH (L 3)? rc“ (III.25)

and o = 2w (L+d) 2 x5 (III.26)
Then define A, B, C, and D by the relations

A= (/16) 3EE+n B ng) (14e) T2  (zIm.en)

B = (1/128)(29 t¥+72 342k £2- 32 g-48)(2+8) Y2,  (11I.28)

C = (324) (962 +32¢+8) (1+58)7, (III.29)

and D = (3/192)(87 £2+356 t2 4356 £+192)(1+ 5)‘1‘. (III.30)
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Finally let
I = (L+3) [(cos™t ) (¢A + oB) + LC + oD], (I1I.318)
vhere @ = -&(e+2)"t. (III.31b)

Then one can show that

Q = Fexp [$I-a(n'-n)] (1I1.322)
where
2 g (k1) _ L 2 -2\1%
[ )]
% 8x g=1 l+n s

The quantity Q gives the ratio of the wave function fL(nz ;r) to the
Coulamb wave function for the emergy E. We now use Egs. (III.32) in Eq. (III.9)

to find the reaction rate.

D. The Reaction Rate
We first comsider the reaction rate from an initial state (nx,ny,nz).

Substituting Eqs. (III.32) in Eq. (III.9) yields

I‘L(ni,ny,nz) = GI‘Lc(E), (I1I.33a)
vhere G = Di(2le DI PP 5o (a0 P e [T-2x(n’ -n)],  (ZIL.ssm)

and I‘LC(E) is the reaction rate for a pwe Coulomb wave with energy E.

To find the average lifetime of a nucleus in a stellar interior, we must
perfomb a thermal average over oscillator states. We shall find in Section IV
that the theory applies only to temperatures low enough that

10 ()™t «< 1. (III.34)
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Thus we assume n_ and ny are both zero. The sum over n, must be carried out,
however, due to the strong dependence of ' on n . Consistent with our previ-
ous assumption of a bee lattice, we assume each nucleus has eight nearest
neighbors and .obtaiz_x the expression
0
-8 z r.(0,0,n) exp [- nzmz(m)'l] v (11r.35)
o, =0

for the inverse lifetime.

In the important special case of an s-wave interaction, the reaction rate
corresponding to a Coulamb wave with unit number density at infinity is often

mritteng

r.° = s(E) vE oM, (111.36)

where the 'cross-section factor S(E) can usually be determined from the results
of leboratory experiments; it contains all of the purely nuclear aspects of

the reaction rate. The quantity v in Eq. (III.36) is the velocity correspond-
ing to energy E and wave number «. Using Egs. (II.17), (III.12b), (III.32b),
(III.33), and (III.36) in Eq. (III.35), one finds that the inverse lifetime for

an s-wave reaction is given by

-ro‘l - J znz S(E) exp [- 2m' +I-n mz(km)'l] , (1II1.37a)

where

3 = 1.00 (/)3 51 (IIT.370)

The quantities n' and I were defined in Eqs. (III.24) and (III.31), respectively..

The energy E can be written in the convenient form

E = 1.8 222 (o/)Y3 + 1.88 (a, + %) 1zep® M2, (III.38)
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Equations (III.35) and (IIT.37) give the inverse lifetime of & nucleus
in a solid lattice of density p. In Section IV we describe the range of

temperatures and densities to which these formulae apply.

IV. LIMITATIONS AND GENERALIZATIONS
A. Assumption of Identical Particles
We have considered so far only the case of nuclear reactions in a lattice
of identical particles. The assumption of identical particles allowed the

relatively easy eveluation of b

an’ Q > and nz. If these parameters could be

evaluated for a medium of more complicated composition, the res‘_l; of our treat-
nent could immediately be generalized to include reactions between nonidentical
particles. Equation (ITI.33) holds for nonidentical particles, providing we
interpret u as Mle(M1+M2)-l and replace v by 2,2, in all cases.

Accurate evaluation of b an’ ﬂx’ and ﬂz is difficult for & nuclear reaction
in a star of arbitrary composition. Such a star does not possess & periodic
lattice. Consequently the phonon technique cannot be used to find Qx and nz »
and typical distances between neighboring nuclel of the reacting species
could only be estimated accurately by careful analysis of the energies of
different geometrical configurations.

Here we suggest a crude general rule for estimating the nearest-neighbor
distance between two nonidentical nuclei. We picture the lattice as composed
of neutral regions, one region for each ion. The neutral region including a
nucleus of charge Z' would have volume .Z'ne°l, vhere n, is the electron number
density. For exasmple, consider the case ofv a nucleus of charge Zl imbédded ~
in a medium of much smaller charges 22. We could picture the charge Zl at the
center of & sphere of radius (3z1)1/3 (47 e)':l/s. The sphere would then be
surrounded by small cubes of edge length 221/ 3ne‘1/. 3. each cube containing
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one nucleus and 22 electrons. According to this crude picture, the nearest-
neighbor distance between nuclei of charge zl and nuclei of charge 22 is given

by
b = 83 (32,5 ()3 4 3 2,7 (v.2)
Although Eq. (IV.1l) was "derived" for the case of Z, >> Z,, ve note that it

also gives a reasonable formla

b o= 1120 (1v.2)

for the case where Z, and Z, are equal. Thus Eg. (IV.1) would be & reasonable
guess for all Zl > 22.

We can make a correspondingly simple assumption about the lattice poten-~
tial. We assume U(;} has the form suggested in Eq. (II.9a), with k, set equal
to zero. Then Egs. (II.9b) and (II.9c) imply that

nza - 3 zlzae"2 -1 bn;:" (1v.3)
and ky, = %2,2.6° v "% (IV.4)

Setting nx equal to nz would not cause serious error since the reaction rate
does not depend strongly on nx.

Equations (IV.1l)-(IV.4k) represent only crude estimates of the parameters
needed for finding a reaction rate in a medium of arbitrary composition. Care-
ful analysis of lattice configurations for various compositions might suggest

more accurate rules.

- B. Assumption of One I~-Value
We have assumed that one initial value of orbital angular momentum domi-
nates the reaction rate. Reactions between light nuclei are predominantly



s-wave, but several different orbital angular momenta may be important in
reactions between heavier nuclei. Incorrectly assuming that one L-value
dominates the rate, one may overlook the effects of interference and may

make errors in the geametrical factors a but such errors are unlikely to

IM’
amount to as much as a factor of ten. The barrier penetration factors for

reactions between heavy particles range fram about e™0 4o =150

for the
conditions to which the solid-state model applies. Due to our incomplete
knowledge of U(r) and our epproximate method of solving the Schrddinger equa-
tion, we are likely to make errors of several percent in the barrier penetra-
tion exponents. These exrrors are likely to be larger than any caused by

incorrect assumptions about the dominent IL-values,

C. Resonant Reactions
The treatment outlined above does not apply directly to reactions with
strong resonsnces at energies smallexr than about two or three times 72e "l,
vhich ranges from less than 1 keV for protons at 10° gn/cc to several hundred
keV for carbon muclei at 1070 gn/ce., The widths of the harmonic oscillator
states are likely to be ]ai'ge campared to the widths of the nuclear resonances.

To apply the solid-state treatment to a reaction like

SHe," g c]2+7

vhich involves low-lying resonances, one would have to estimate the widths of

the oscillator states and replace the sum in Eq. (IIi.S?a) by en integral.

D. High-Density Limit
At high densities, the amplitudes of the ground-state vibrations may
become comparable to bnn‘ When this happens, the muclei no longer form a dbce
lattice, as a.asumed in Sections II and III. Several investigators have
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estimated the "melting density” of a lattice consisting of electrons immersed
in a uniform distribution of positive charge. These estimates can easily be
converted to app]& to the case of a lattice of nuclei in a uniform negative
charge density. The most recent estimates are those by de Wefte.lo His work

locates the melting density in the range

1.6 x 10* 25% < p, < 1.6 x 10° PN (1v.5)

vhere p 1s in gn/ce. Earlier worklt

108 z84* gn/ce.

Just above the melting point, the nuclei form a fluid rather than a

indicated a melting density of about

periodiec lattice, but the motion is still largely vibrational. In this liquid
range, where the mean free path between collisions is small compared to bnn
but the vibrations are still too large to allow a strictly periodic lattice,
it still seems reasomable to treat the relative motion of two particles using
the potential of Eq. (II.9). That potential depends on the assumption of a
bee lattice through the parameters b nﬁ, 0, end Q. The nearest-neighbor
distance varies only a few percent from one lattice structure to another. The
frequencies nx and nz have been calculated for the fee lattice and for a
"smeared-out" lattice intended to resemble & liquid, and the values of 8, and
8, are within about 10% of the values obtained for the bce lattice. Thus we
conclude that the parameters bnn’ Dx, and nz are nearly independent of the
geametrical arrangement of the lattice, although they depend strongly on the
density and on the charge and mass of the nuclei. We therefore hope that the
values of bnn’ nx, and nz for the bec lattice also suffice for the ranée of
densities where the nuclei execute small vibrations in a nonperiodic lattice.
The range of applicability of the .fo:rmﬂa could then be extended to a density




given by the approximate relation

p, ~ 10° 28a% an/ce. (1Iv.6)

The above considerations are important mainly for reactions between
protons. At densities greater than about 10% enfce , 8 zero~temperature proton
star could be described more accurately as a degenerate gas than as a soligd.
Thus the solid-state approach fails to apply to protons at densities well
below those expected in neutron stars.

We have also assumed that the nearest-neighbor distance is large cqmpared

to the nuclear radius. Thus the solid-stete model applies only if

p << 10% gn/ce. (Iv.7)

E, High-Temperature Limit
The temperature enters the expression for the reaction rate through the
sums over n, in Egs. (11X.33) and (III.37). Below a critical temperature

Tc, given approximately by the relation
T, ~ 1200 ZA™ o2, (1v.8)

where Tc is in °K end p is in gxn/ cc, essentlially all reactions take place
from the ground state. Thus for T << T o? the rate is independent of T. Near
the temperature Tc, the first few excited states become important, and the

rate begins to increase with temperature. At a temperature just slightly
above Tc’ most reactions take place from unbound states, and the solid-state

approach fails. Just above the critical temperature, most of the nuclei in

the lattice are still in their ground states because

0 (k) ~ 2., (Iv.9)
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and mz(ch)-l ~ 3.5. (1Iv.10)

However, the exceptionslly energetic nuclei that are most likely to react have
enough energy to break through the lattice. The mean free path between colli-
sions of these unusually energetic nuclei is large campared to bnn’ and they
can be treated approximately as gas particles. Salpeterh has developed a

method for calculating reaction rates for T >> Tc‘

V. NUMERICAL RESULIS
A. Proton-Proton Reactions
Equations (III.37) have been used to calculate the mean lifetime of the
protons in hydrogen stars at various temperatures and densities. The protons

were assumed t0 undergo the reactions

B +E » Bsetav (v.1)
and Hee +H + B4v. (v.2)

For densities greater than about 10° gm/ce , the extreme degeneracy of the
electrons causes the capture reaction (V.2) to daminate the process of hydrogen
burning.

Figure 2 shows the temperature dependence of the mean lifetime at a
density of 10° gm/cc. Below a critical temperature of about 2 X 10° °K, the
reaction rate is independent of tempersture. Above about .'l.o6 °K, the formula

of Salpeterh should be accurate.

B. Carbon-Carbon Reactions

The mean lifetimes of 012 miclei in stars of pure carbon have also been

computed. Two carbon nuclel may react to form the following products: Mgzh-l-)',
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Na“" + Hl, Mgzs +n, Ne + He', and 0 + 2 Heh. Equations (III.37) were

used to calculate the mean lifetimes of the carbon nuclei, even though there .
is no reason to expect that the reactions are predominantly s-wave. Reeves:12
has expressed the rate of the carbon-carbon reactions in terms of the cross
section parsmeter S(E). The small errors caused by estimating the geometrical
factors arm incorrectly and by neglecting interference effects should not be
serlous because of the strong density dependence of the reaction rate.

Figure 3 shows the mean lifetime of a carbon mucleus st 10 °K. At low
temperatures the reaction rate is significant for densities greater than about

2 + C'L'2 reactions depends much more strongly

10%° gn/cc. The rate of the C
on density than the rate of the proton-proton reactions because the barrier

penetration exponent is much larger for Z = 6 than for 2 = 1.

C. Comparison with Cameron's Method

Czauneron2 has suggested calculating the rates of pycnonuclear reactions
by treating the system of nuclei as a gas with Coulomb interactions between
the particles. The curves marked "GAS(CAMERON)" in Fig. 3 were computed by
& method similar to that proposed by Cameron, using the same values of the
cross-section parameter S(E)g":12 as in the solid-state calculation.

Figure 3 indicates that the solid-state method predlcts rates three to
ten orders of magnitude smaller than those computed by the gas model. The
large discrepancy in the predictions of the two models is due to the different
estimates of the classical turning point radius, Tor which is an important
factor in the barrier penetration exponent. According to the solid-state
approach, r c 1s slightly less than the nearest-neighbor distance. According
to Cameronfs model of electrostatic screening at low temperstures, r e is

slightly less than the charge-cloud radius, given by (321)1/ 5 (hme)"ll 3,
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'u_rhere Zl > Za. For Zl = Z2’ this charge-cloud radius is only 0.57 of our
nearest-neighbor distance. Due to the strong dependence of the barrier
penetration factor on the classical turning point, this factor of 0.57 causes
a large difference in the predicted rates. However, for Z, >> Z,, Cameron's
charge-cloud radius is approximately equal to the nearest-neighbor distance
given by Eq. (IV.1). Hence Cemeron's method and the solid-state method would
give similar predictions for reactions in vwhich one nucleus is much larger

than the other.
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Fig. 3.

FIGURE CAPTIONS

Central temperatures and densities of various types of stars.
The solid-state approach to nuclear reactions applies to Region
I on the figure. In Region II, most nuclear motion is vibra-
tional, but the nuclel most likely to react have enough energy
to break through the lattice. In Regions III and IV, the nuclei
move like atoms in a gas. In Region III, the electrons are

degenerate, while in Region IV they are nondegenerate.

Predictions of proton lifetimes at 10° gm/cc. The 1lifetimes
predicted by the method of Salpeter are campared to those com=-
puted by the solid-state method using oscillator frequencies
obtained by analyzing the dynamics of the lattice. The dotted
line indicates a reasonable interpolation between the two

formulse.

Predictions of the lifetimes of protons and 012 nuclei. The
lifetimes predicted by the method of Cameron are compared to
those camputed by the solid-state method using oscillator
frequencies obtained (1) from an analysis of lattice dynamics
and (2) from an electrostetic analysis. A
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